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The industrial process for quality machine translation 
Lori Thicke, LexWorks (Eurotexte Group) | Translators without Borders 

 
 

ABSTRACT 
 

Machine translation (MT) is not a tool. Machine translation is an industrial process. 

Selecting the right MT engine – rules-based (RBMT), statistical (SMT) or hybrid – is 

just one part of a process that, if correctly managed, is capable of lowering 
translation costs, increasing productivity and even improving quality and consistency. 

To reach this goal, the MT process must pass through consultation, content, 

customisation, piloting, processing, post-editing, metrics and maintenance. This 

article looks at the first three stages in the MT process – consultation, content and 

customisation – and how the virtuous circle of post-editing feedback supports quality 
MT output. This is important because if the MT process is badly managed, it is 

inevitably the post-editor who pays the price. A system that is based on post-editors 

cleaning up bad MT is just not sustainable. With quality as the goal, the question is 

not so much what engine to choose but what engine and what process will give the 
best results. To determine what activities are most effective in achieving MT quality, 

a LexWorks study showed that a well-trained engine with an ongoing cycle of 

improvements from post-editing feedback is essential for MT quality. 
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Lexcelera, the company I co-founded in 1986, has been deploying 

Machine Translation (MT) systems for customer content since 2007, 

localising on a variety of engines in over a dozen languages. We started 

with the ‘easy’ languages, French and Spanish, before moving on to 

Italian and Dutch, German, Polish, Japanese, Chinese, Arabic, and so on. 

We have used a variety of commercial and non-commercial engines, both 

rules-based (RBMT) and statistical (SMT).  

 

In 2012 Lexcelera opened LexWorks to be the North American bridge to 

MT services such as consulting, creating engines and post-editing. 

 

Over the last six years we have delivered major localisation projects using 

RBMT to shave off 50% of the time and 30% of the cost. (Our customers 
have achieved a positive Return on Investment – or ROI – from  the first 

project, including engine training costs.) We have also delivered UI and 

courseware translations that were more highly rated for quality than their 

fully human versions. We have turned around 90,000 word translations 

overnight in raw SMT so that our customers could respond to calls for 

tender more quickly. 

 

And what has all this taught us?  
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We have come to realise that machine translation is not a tool. Machine 

translation is a process. While much debate centres around the engine, 

whether rules-based or statistical, we have found that selecting the engine 

(or engines) is just one part of an industrial MT process – a process that, 

if correctly managed, is capable of lowering translation costs, increasing 
productivity and even improving quality and consistency.  

 

To reach this goal, we believe that eight stages need to be in the MT 

process. 

 

Pre-production  

1. Consultation  

2. Content 

3. Customisation 

 

Production  

4. Piloting  

5. Processing  
6. Post-Editing 

 

Post-production 

7. Metrics  

8. Maintenance 

 

The last of these stages, maintenance, is the virtuous circle that links 

post-editing feedback to further customisations and real-time 

improvements in quality. In this process, machine translation technology 

is augmented by automated quality controls on both sides of the 

production process (automatic pre- and post-editing) and sees ongoing 

improvements by correcting issues flagged by the post-editors. 
 

This article will look at the first three stages in the MT process: 

Consultation, Content and Customisation, and how the virtuous circle of 

post-editing feedback supports quality MT output. 

 

 

1. Why does quality MT matter? 

 

Until now it seems that the market has been considering MT quality as an 

unreachable goal. Current attitudes can best be summed up as: "It does 

not matter if machine translation is poor, as long as the post-editors clean 

it up." 

  
So who pays the price of badly-managed MT processes that result in sub-

optimum output? 
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The truth is that it is usually not the customer who pays for poor MT. It is 

the post-editors. By the time MT output gets to the end customer, any 

major flaws will have been fixed. I would venture to say that when we rely 

on post-editors to fix bad MT, the process does not matter at all. It does 

not matter which MT engine is used and whether or not it is trained well, 
because in the end there is always one secret weapon to make things 

right: the post-editors. 

 

The post-editors, hired to repair machine translation, are the ones who 

pay the price for faulty processes. They carry the full brunt of a badly-

trained MT engine, or of an engine that does not fit the content thrown 

into it. Post-editors work as hard as they need to in order to make sure 

that the customers get the quality they were expecting, regardless of 

what shape their material was in when spit out by the MT engine. And 

they do this at a steep discount over their normal rates. 

 

The problem with this system is that it is not sustainable. For one thing, 

every post-editor unfairly paid to fix bad MT errors means that there just 
may well be one less post-editor who will say yes to the next project. I 

believe that poorly-managed MT is the main reason that the pool of those 

translators who are willing to be post-editors is not growing as it should. 

 

Respecting the time of post-editors is the first, and arguably most 

compelling, reason that companies should strive for quality MT output. 

 

2. Tool wars 

 

Rather than concentrating on the full process for optimising MT, most of 

the debate today is stuck on what engine to use. Discussions – sometimes 

heated and not always evidence-based – compare today's two dominant 
approaches, and the competing software built up around them. Camps 

tend to be divided between supporters of rules-based machine translation 

and those of statistical machine translation, the first, as its name 

suggests, relying on grammatical rules that have been hard-coded into 

language-specific engines and the second using algorithms to first parse 

the text, then recreate it in another language based on mathematical 

predictions of the most likely translation. 

 

The tool wars rage on – in conferences and online. RBMT and SMT face off 

against each other, their individual merits mostly argued by vendors of 

one solution or another. In the end, both sides may tip their hat to hybrid 

systems – the rare hybrid systems that actually are hybrid, as well as 

those that are merely a bit of window dressing by one side or the other. 
  

The endless RBMT vs. SMT debates attract converts to one side or 

another, depending on which vendor is getting the most face time, or 

seems the most credible. Open source, naturally, gets a lot of traction due 
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to the attractive pricing (free, if you do not count the learning curve.) 

Evaluations abound, but they are often supplied by vendors of one 

solution or another: in tests, a trained SMT engine may be pitted against 

an untrained RBMT engine, or vice versa.  

 
These contests are also inevitably skewed by the fact that content types 

and language pairs tend to play a determining role in engine performance. 

One engine is better at French, another at Japanese, and both sides 

declare victory. 

 

Behind the face-offs are the metrics – with names like BLEU, NIST, GTM – 

which may or may not concur with each other, let alone with human 

evaluations. Critics complain that the playing field is not level and that 

certain metrics favour certain approaches. In a presentation entitled 

Language Research at DARPA, submitted to AMTA, the Association of 

Machine Translation in the Americas, Joe Olive, Program Manager, wrote 

that the leading metric, BLEU, is "not sensitive to comprehensibility or 

accuracy" and "favors SMT.")1  

Since the very metrics used to measure quality may contradict a human 

judgment on whether a particular translation is good or not, automatic 

quality evaluation tools are just as inconclusive in declaring a winner in 

the MT wars as the face-offs have been. 

 

Hype can be another disruptive factor in this discussion. Software vendors 

make claims that can only be tested with an expensive pilot. Language 

Service Providers (LSPs) may only be familiar with one particular tool, and 

so cannot offer customers the engine that performs best with their 

content, file formats or language pairs. 

 

No wonder the market is confused! 
 

3. Consultation  

 

The choice of MT engine – Lucy, Moses, Systran, Language Weaver, Asia 

Online, PROMT, Bing, Google, Apertium, Reverso, and so on – is 

important. But it is not the only aspect to consider in the consultation 

phase. Considering just what engine to choose is akin to assuming that all 

there is to translation memory (TM) management is choosing between 

MemoQ, Déjà Vu and Trados, without any consideration of how a tool 

                                                 
1 Unpublished presentation given at the 7th biennial conference of the Association of 
Machine Translation in the Americas, Cambridge, Massachusetts, USA, August 8-12, 

2006.  
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would be integrated, what data it would include, who would manage it, 

and so on. 

 

Machine translation is much more complex than translation memory. But 

the process bears similarities. For example, when choosing your TM tool, 
you may have made a decision about what content might be suitable. 

Next you may have consulted with your internal staff about what expertise 

and what resources you had in-house, what systems the TM tool would 

have to integrate with and what functionalities were most important. You 

may have also looked at what external resources were available to help 

you set up the TM systems, or even to manage the process. Finally, you 

would have looked customising the tool by populating it with your content. 

 

All these considerations, and more, apply to the MT tool selection process. 

So rather than "What engine should I use?" the question should be "How 

will I determine what engine and what process will give the best results?" 

 

The next step in the MT process is to decide how you want to manage MT. 
Do you want an internal engine that is customised to your content, or do 

you plan to outsource all MT activities, from customising and processing to 

post-editing and maintaining?  

 

If you intend to use the engine internally, what kind of resources do you 

have? SMT will require more processing power, and strong engineering; 

RBMT managed internally will require more language resources. If you are 

bringing in an external vendor, would you want them to manage part (e.g. 

just training the engine) or all of the process (from training to post-

editing)? 

 

A linguistic audit may conclude the consultation phase and allow you to 
make basic decisions about how you intend to manage your MT process. 

 
4. Content 

 

Content is critical in the MT process as well. What type of information you 

want to translate is important in deciding what engine to use: not all 

content, not all file formats and not all language pairs are suited to the 

same engine. With Lexcelera’s projects I have seen that RBMT engines 

such as Systran, Lucy, Reverso, Apertium and PROMT perform best with 

"narrow domain" content. That is, content with set terminology that needs 

to be respected, as in the case of software documentation and technical 

manuals. 'Broad domain' content such as patents and forums and other 

user-generated content are better suited to SMT engines such as Bing, 

Google, Language Weaver and Asia Online. 

 
As for languages, almost any engine will do a pretty good job on French 

and Spanish. But for Japanese and German, to name just two, RBMT does 
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a better job. On the other hand, the minute you stray out of the dominant 

languages, SMT is the right choice. In fact, for ‘exotic’ languages, SMT is 

the only choice since RBMT engines tend to cover only the top 20 or so 

languages. 

 
Engine choice is not only based on what type of content you want to 

translate, but also on what you have already translated. Specifically what 

kind of linguistic corpora have you built up? For example if you haven’t 

got millions of segments of both good quality aligned translations (bi-text 

data) as well as monolingual content, there is usually no point in even 

thinking about SMT. This is because SMT tends to be a blank slate that 

you train with your own corpora. SMT generally learns your terminology at 

the same time as it learns your language pairs. RBMT, on the other hand, 

is already fully stocked on grammatical rules for the major languages and 

simply needs to be customised on the right terminology for your domain. 

 

Another factor to consider when choosing an MT engine is what format 

your content is in. Content with tags that need to be protected usually is 
better managed by an RBMT engine, which can preserve the tags and not 

translate them. 

 

The final consideration with content is how to prepare your text upstream 

so that it behaves better in MT: using software like Acrolinx to correct 

errors and inconsistencies, getting your writers to write with MT in mind 

by limiting sentences to 23 words and one single idea, and so on. 

  

Once you have consulted with your internal teams, assessed your needs 

and external resources, analyzed and optimised your content, the next 

step is customising your MT engine. 

 
5. Customisation 

 

When we talk about customising or training an MT engine, the approach is 

different for a rules-based system and for a statistical system. 

 

Google, Moses, Asia Online, Bing and Language Weaver are all examples 

of statistical engines. Systran, Lucy, Reverso, PROMT and Apertium are all 

examples of rules-based engines. 

 

Not all these engines can be trained, of course. Users need a special 

arrangement to make more than limited improvements to Google and 

Bing. But all the others can and should be trained either by the customer 

or at least on the customer’s content. 
 

Training an SMT engine means training it for both the language pair - say, 

from English to Spanish - and for terminology. Both language and 

terminology are extrapolated from the content fed into the engine. That 
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is, each SMT engine is truly individual, based on algorithms that analyse 

what is found in the training data. This data will be made up of a 

minimum of one to two million segments of bilingual text (for an 'easy' 

pair such as English-Spanish) up to 20 million aligned segments (for 

Japanese, for example). The system also relies on target language 
monolingual data to complete the language model. Terminology is learned 

on this basis, using the probability model: the choice it has most often 

seen is the one that will be adopted. 

 

In the same way as translation memory is language-independent because 

it sees only matching pairs, SMT can be trained for virtually any language 

pair, as long as enough bilingual content exists to train it on. This is the 

beauty of SMT. An engine can be created for any language under the sun, 

as long as there is a sufficiently large corpus of bi-text data to train it on. 

 

The same cannot be said for RBMT. Rules-based engines are created for a 

specific language pair, with grammatical rules hard-wired – such as the 

noun-adjective word order in French and adjective-noun order in English. 
On the upside, RBMT comes ready to handle set language pairs right out 

of the box so even untrained there is a basis on which it can be deployed. 

The same is true of engines like Bing and Google, of course, which are 

already trained on an impressive number of language pairs.  

 

The critical phase of RBMT training concerns terminology. While for SMT, 

terminology is learned at the same time as the language model is built, 

and relies on hefty data crunching, RBMT learns terminology from 

translation memories (the Systran hybrid uses TMs to build a language 

model) as well as from human linguists who encode glossary entries so 

that the system will understand them and always apply the right 

terminology. 
  

This terminology knowledge can be built up per customer, per domain or 

per product line. In an ideal world, and for best MT results, the 

terminology would be at the most granular level possible. We train per 

domain (e.g. IT), per customer (e.g. for a particular company) and per 

product line. 

 

If we favour rules-based engines for uses like documentation, On-Line 

Help (OLH), eLearning courseware and even User Interface (UI), it is 

because of the ease with which the engine can be customised to specific 

terminology, and the reliability of RBMT in returning the correct term. 

 

Of course SMT can be customised to terminology. In the training phase, 
millions of segments of bi-text are fed into the engine. However, it is hard 

to control all the terminology choices that might be accounted for in all 

those segments. Since the user cannot control what the algorithms learn, 

they may sometimes learn the wrong thing.  
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For example, if multiple product lines, with differing terminology, are 

contained in the SMT training data, the engine will choose the terms that 

appear most often in the training data, whether it is the right term in this 

context or not. This can be a problem where a particular translation 
concerns Product Line A while most of the training data concerned Product 

Line B; in this case, the terminology of Product Line B will override the 

desired terminology. 

 

Customisation of an RBMT or hybrid engine involves data mining and 

extraction to assemble lists of terms and their approved equivalents. This 

customisation is more than the simple glossary preparation needed to 

ensure that a human translator will have all the correct terms at his or her 

fingertips. RBMT customisation involves linguistically coding glossary 

entries as well as terms not to translate, such as a product name, a 

division, or a proper name. 

 

To measure the impact of customisation in a rules-based hybrid, and at 
the same time determine whether another activity (controlled authoring) 

is more or less important than customisation, we carried out an informal 

study with John Kohl of SAS Institute. The content for the study was SAS 

Online Help documentation in HTML format and the engine was the 

Systran 7.0 hybrid.  

 

In the first place, we compared the MT output we obtained ‘out of the box’ 

with that of a customised Hybrid engine. We could have used any number 

of measures such as BLEU or NIST, but coming from the perspective of a 

working translation company we decided to use a measure that was 

important to the cost structure of a translation: how much post-editing 

time was required to complete the task of bringing the two versions to 
human-quality. 

 

The first measure we obtained was the baseline. That is, on that particular 

text, a translator could translate at the rate of 2400 words per day.  

 

Next we obtained the post-editing speeds. We found that out of the box, 

the untrained engine generated output that could be post-edited at the 

rate of 4000 words per day. Next we compared that with the trained 

engine and discovered that customising Systran nearly doubled post-

editing speed, to the rate of 7400 words per day.  

 

The next task was to measure the impact of controlled authoring. To do 

this we pre-edited the text using Acrolinx rules. Sentences were shortened 
and simplified, as below: 
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Original: Acrochecked: 

Understanding the differences between 
owned and checked out alerts is critical to 

understanding SAS Anti-Money Laundering. 

 

In order to understand SAS Anti-Money 
Laundering, you need to understand the 

differences between owned alerts and 

checked out alerts. 

 

Table 1. Example of pre-edited text using Acrolinx rules 

 

This study found that pre-editing source content improved post-editing 
time by nearly a third, to around 9400 words per day. 

 

In subsequent studies as part of an EU R&D project with Moses, we were 

unable to duplicate the same high impact of controlled authoring on a 

statistical-based output. 

 

6. The virtuous circle of post-editing feedback 

 

There are those who consider post-editing a similar act to what translators 

do when they work with translation memory. That is, they believe that a 

post-editor's job is simply to correct the text. We do not believe that. 

 
For us the post-editor is an integral part of the MT process. In our engine 

training for example, a crucial step after preparing the dictionaries that 

customise the engine is testing the output with a post-editor who not only 

corrects the mistakes, but makes those corrections directly in the engine, 

in real time. 

 

Feeding back the corrections into the engine is the critical step in our MT 

process, where corrections from the post-editing phase are fed back into 

the system to improve the output. The ideal is to do this in as close to real 

time as possible in order to achieve maximum benefits from the post-

editing process. 

 

Post-editing should not be regarded as a stand-alone activity. While some 
corrections will be one-offs – fixing an error that is not likely to recur – at 

least 50% concern errors that should be fixed once and for all in the 

engine.  

 

In our experience, the ideal process for a high volume project such as a 

software manual is to process a batch for the post-editors, get their 

corrections, then input another batch after their corrections have been 

input into the engine. For the first couple of years with a particular 

product line, the improvements tend to be the most dramatic; after that 

the improvement will continue with each iteration, but at a slower pace. 

 

With SMT the virtuous circle of post-editing feedback and customisations 
is similar, although for most engines the corrections are fed into the 

system just once or twice a year, when enough data has been 

accumulated to justify a new training cycle. 
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7. Conclusion 

 

Machine translation is the most exciting technology to come along since 

translation memory first made an appearance in the translation industry. 
If properly managed, MT can result in higher productivity and lowered 

costs, faster throughput and even improved quality and consistency. 

However, since these results are harder to achieve than similar results 

with translation memories, many in the translation and localisation 

industry have become stuck at just the first step in the MT process: 

choosing the tool. 

 

But machine translation is about much more than what tool you use, 

whether rules-based or statistical. Machine translation is an industrial 

process. And, like any process it has inputs and outputs and a sequence of 

steps that need to be followed. A consultation phase helps lay the ground 

rules for how the process will be managed. In the content phase a closer 

look is given to the types of documents and languages that will be 
involved. Once the key decisions are made, the customisation phase 

involves customising – or training – the engine(s) on the specific types of 

content to translate. This is a critical phase to achieving MT quality, an 

important goal because post-editors run the risk of being burned out by 

amateurish MT. 

 

Post-editors are essential to achieving human quality translations. But 

they can play a more active role than merely correcting what comes out of 

the MT engine. Post-editors can also have a major impact on engine 

quality through their corrections. This is the virtuous circle of post-editing 

feedback. In a rules-based process, corrections may be fed into the 

engine and the output improved at any point. In a statistical process, 
corrections are gathered in the form of translation memories that, once 

improved, can be fed back into the engine with the next data training 

cycle. 

 

Properly training your MT engine and continuing to update it are two of 

the most significant activities for improving MT quality. We can say this 

with certainty based on the quality ratings our customers have given. A 

recent ratings report from Bentley Systems included the line: “Contrary to 

all expectations, using MT has improved the translation quality.” Our score 

on that particular project for Online Help (in French) was 8.25/10 for MT, 

while the traditional TM translation was 8/10. For the courseware, the 

German reviewer for commented “It was nearly 9 […] it was the best 

translation of courseware I ever read.”  
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